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Abstract—With the wide applications of saliency information
in visual signal processing, many saliency detection methods
have been proposed. However, some key characteristics of the
human visual system (HVS) are still neglected in building these
saliency detection models. In this paper, we propose a new saliency
detection model based on the human visual sensitivity and the
amplitude spectrum of quaternion Fourier transform (QFT).
We use the amplitude spectrum of QFT to represent the color,
intensity, and orientation distributions for image patches. The
saliency value for each image patch is calculated by not only the
differences between the QFT amplitude spectrum of this patch
and other patches in the whole image, but also the visual impacts
for these differences determined by the human visual sensitivity.
The experiment results show that the proposed saliency detection
model outperforms the state-of-the-art detection models. In ad-
dition, we apply our proposed model in the application of image
retargeting and achieve better performance over the conventional
algorithms.

Index Terms—Amplitude spectrum, Fourier transform, human
visual sensitivity, saliency detection, visual attention.

I. INTRODUCTION

W ITH the rapid increase in multimedia services, the effi-
cient perceptual-aware image or video processing tech-

nology becomes more important for delivering high-quality im-
ages or videos. The saliency detection technologies, which ex-
ploit the most important areas for natural scenes, are very useful
in practice, since they make the perceptual-friendly image or
video processing possible by understanding the functionalities
of the human visual system (HVS). The saliency detection tech-
nologies have already been used widely in many multimedia ap-
plications such as coding, retrieval, adaptation, and streaming
[12], [14], [36], [38].
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Visual attention is an important characteristic in the HVS and
the research on visual attention has been reported in 1890 [1].
It is a cognitive process of selecting the relevant areas while ac-
quiring the most significant information from the visual scene.
Generally, the information captured by the human eyes is much
more than that the central nervous system can process. When
observers look at a scene, it is impossible for them to recognize
all the objects and their relationships in the scene immediately.
Thus, the selective attention will allocate processing resources
to these salient areas rather than the entire scene [40], [41].
There are two different approaches in visual attention mech-
anism: bottom-up approach and top-down approach [2], [19],
[42], [43]. Bottom-up approach, which is data-driven and task-
independent, is a perception processing for automatic salient re-
gion selection for images. On the contrary, top-down approach
is related to the recognition processing influenced by the prior
knowledge such as tasks to be performed, the feature distribu-
tion of the target, the context of the visual scene, and so on
[20]–[22].

In this paper, we focus on the bottom-up approach. During
the past several decades, researchers have tried to understand
the visual attention mechanism and developed computational
models for predictions [2], [45], [46]. In the 1980s, Treisman et
al. developed the well-known Feature-Integration Theory (FIT)
[2]. According to this theory, some salient locations in a natural
scene automatically stand out due to specific low-level features
(such as color, intensity, orientation, and so on) when observers
look at the visual scene. Many computational models of visual
attention based on FIT have been proposed [3]–[11], [13]. Itti et
al. devised a visual attention model based on the behavior and
the neuronal architecture of the primates’ early visual system
[3]. This model obtains the feature maps through calculating the
multi-scale center-surround differences for color, orientation,
and intensity channels [3]. The final saliency map is achieved
by the linear combination for these feature maps. Later, Harel
et al. proposed a graph-based visual saliency (GBVS) model
by using a better dissimilarity measure for saliency based on
Itti’s model [4]. In [5], Hou et al. devised a saliency detection
model based on a concept defined as spectral residual (SR).
Guo et al. later found that Hou’s model was caused by phase
spectrum and they designed a phase-based saliency detection
model [6]. The model in [6] achieves the final saliency map by
inverse Fourier transform (IFT) on a constant amplitude spec-
trum and the original phase spectrum of the image. Bruce et
al. described visual attention based on the principle of maxi-
mizing information [7]. Liu et al. used the technology of ma-
chine learning to achieve the saliency map for images [9]. Gao
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et al. calculated the center-surround discriminant for saliency
detection [10]. The saliency value for a location is obtained
by the power of a Gabor-like feature set to discriminate the
center-surround visual appearance [10]. Gopalakrishnan et al.
built a saliency detection model based on the color and orien-
tation distributions in images [11]. Recently, a saliency detec-
tion model by Valenti et al. is advanced through calculating the
center-surround differences of edges, color, and shape for im-
ages [13].

Most of these saliency detection models mentioned above ob-
tain the saliency map for images by calculating the center-sur-
round differences. They neglected some key characteristics of
the HVS, such as the human visual sensitivity change due to
foveation (i.e., the influence of an image patch decreases with
the increase of the spatial distance). In this paper, we propose a
novel saliency detection model based on the FIT and the human
visual sensitivity variations. According to the FIT, the salient
area in an image can be distinguished according to the differ-
ences of low-level features between this area and its neighbors.
In our proposed model, we first divide the input image into
small image patches and measure the saliency value for each
image patch through calculating the differences of color, in-
tensity, and orientation distributions between this image patch
and all other patches (all the neighbor patches) in the image.
Unlike existing methods which only consider local contrast or
global contrast [3], [5], we exploit both local and global con-
trast by considering the differences between this patch and all
the other image patches in the image. In addition, the contribu-
tions of these differences to the saliency value of image patches
are different with the consideration of foveation behavior. We
use the foveation-tuned human visual sensitivity to determine
the weightage for these patch differences.

In essence, our proposed model first divides images into
small image patches. Then it uses quaternion Fourier transform
(QFT) instead of Fourier transform (FT) to obtain the amplitude
spectrum of each image patch. Compared with FT which
processes each feature channel of the color images separately,
QFT allows color images to be transformed as a whole [24].
The saliency value of each patch is obtained by two factors:
the differences of QFT amplitude spectrum between this image
patch and other image patches in the whole image, and the
weights for these patch differences determined by the human
visual sensitivity. The novel saliency detection utilizes the
characteristics of the HVS and is proven promising, as shown
in Sections II–VI.

In this study, we also explore the application of the proposed
saliency detection model in image retargeting. Recently, many
efficient algorithms for image retargeting have been devised. Liu
et al. introduced an image retargeting algorithm for mobile de-
vices through generating the optimal browsing path [27]. Ren et
al. designed an image retargeting algorithm based on global en-
ergy optimization [30]. Guo et al. proposed an image retargeting
algorithm combining saliency map and object information to re-
size images [28]. Wang et al. presented an image retargeting al-
gorithm based on saliency map and gradient map [37]. Recently,
a popular image resizing technique called seam carving has been
studied in [15] and [29]. In this study, we use the proposed
saliency detection model in the framework of seam carving in

[29]. Experimental results demonstrate the effectiveness of the
proposed model in the application of image retargeting.

The rest of this paper is organized as follows. In Section II,
we discuss the limitations of the relevant existing saliency
detection models, and the contributions of the proposed model.
In Section III, we describe the details of the proposed model.
Section IV shows the experiment results by comparing the
proposed model with other existing methods. Section V explores
the application of the proposed model in image retargeting.
The final section concludes the paper by summarizing our
findings.

II. LIMITATIONS OF THE MOST RELEVANT MODELS AND

CONTRIBUTIONS OF THE PROPOSED MODEL

In the area of visual attention modeling, some studies [5], [6],
[11] use the FT to get the final saliency map. As a basic trans-
form, FT has been widely used in image processing with many
applications such as convolutions, filtering, compression, and
reconstruction. Because of the importance of the FT, a number
of studies have been carried out to find what the Fourier phase
and amplitude components represent in images. It is commonly
accepted that the phase spectrum carries location information,
while the amplitude spectrum includes the appearance and ori-
entation information for visual scenes [17], [25], [32]. Based
on this understanding, FT has been used in various studies of
the human visual perception and understanding [5], [6], [11],
[34], [35]. In [5] and [6], the saliency map is obtained based on
the phase spectrum, whereas in [11], the amplitude spectrum of
image patches is applied to obtain the orientation saliency sub-
map. We analyze these two types of saliency detection models
in details below.

In the phase-based saliency detection models [5], [6], the
amplitude spectrum and phase spectrum are first obtained by
FT. The saliency map is then calculated using inverse Fourier
transform (IFT) on a user-defined constant amplitude spectrum
and the original phase spectrum. This will amplify the intensity
of the areas with less periodicity or less homogeneity and
suppress the intensity of the areas with more periodicity or
more homogeneity in the original images [5], [6]. In these
approaches, the FT is operated on the whole images, and
thus they mainly consider the contrast for images from the
global perspective. These approaches suffer some defects in
saliency detection. One problem is that these models cannot
detect smooth-texture salient objects in the complex-texture
background, as shown in the first row of Fig. 1(c), since the
complex-texture areas are less homogeneous in those images.
On the other hand, the phase-based saliency detection models
have to resize the images into appropriately smaller sizes to
allow the major part of a salient object to be less homogeneous,
or they will just get the contour of the salient object, as shown
in the second row of Fig. 1(b). Even when the original image is
resized into a smaller one, the saliency map from phase-based
models will still ignore some information of salient objects,
as shown in the second row of Fig. 1(c). On the contrast, the
proposed model can obtain the salient smooth-texture objects
with the complex-texture background in images and will not
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Fig. 1. Original images and the saliency maps. (a) Original images. (b) Saliency maps obtained from phase-based model without resizing the original images
before FT. (c) Saliency maps obtained from phase-based model with resizing the original images into smaller ones (64 pixels for the input image width) [5].
(d) Saliency maps obtained from the saliency detection model in [11]. (e) Saliency maps obtained from the saliency detection model in [3]. (f) Saliency maps
obtained from our proposed saliency detection model.

ignore much information of salient objects, as shown in the first
and second rows of Fig. 1(f), respectively.

The study in [11] gets the final saliency map based on color
and orientation distributions for images. The color and orien-
tation saliency sub-maps are achieved separately by using two
difference algorithms. The final saliency map will be selected
as either the color saliency sub-map or the orientation saliency
sub-map by identifying which of the sub-maps leads to the iden-
tification of the salient region [11]. This model uses amplitude
spectrum to calculate the orientation distribution for images by
computing the global orientation and orientation entropy con-
trast. One problem with this approach is that the orientation
distribution in [11] is calculated by the histograms of 18 spe-
cial orientations for image patches, which causes the loss of
other orientation information. In addition, the final saliency map
chosen as either color saliency sub-map or orientation saliency
sub-map means that the final saliency map is determined by
only color distribution or orientation distribution. Therefore, the
saliency map from the model in [11] will lose much information
of salient objects, as shown in Fig. 1(d). On the contrary, our
proposed model uses the color, intensity, and orientation fea-
tures together to get the final saliency map and it uses all the
orientation information in the calculation of the final saliency
map. Thus the obtained saliency map can better preserve the in-
formation of the salient objects [Fig. 1(f)].

Some classic visual attention models such as the model in
[3] also use the low-level features including color, intensity, and
orientation to calculate the saliency map for images. As these
models calculate the multi-scale center-surround differences of
low-level features from images to get the final saliency map,
they mainly focus on the local contrast of low-level features for
saliency detection [3]. One problem with the model in [3] is
that it might regard the non-salient areas (such as areas in the
background) as salient, as shown in Fig. 1(e), due to the lack
of consideration for global characteristics in the image. In the
saliency map from the first row of Fig. 1(e), some non-salient
areas from the background are considered as salient areas. On
the contrary, our proposed model considers both local and global
contrast for images, and thus it can obtain much better saliency
maps [Fig. 1(f)].

As can be seen from the analysis above, a key factor of suc-
cessful saliency detection is the proper treatment of local and

global information. Another important and related issue is how
to combine (or pool) different features at a location and a feature
from different locations. In [3] and [11], linear combinations are
used; in [11], the Euclidian distances are used for the weighting
of patch differences. However, there is lack of perceptual ground
for all these approaches.

Compared with these saliency detection models discussed
above, our proposed saliency detection model based on the
human visual sensitivity and the amplitude spectrum achieves a
higher accuracy in the detection of salient areas. The main con-
tributions of our proposed model include the following: 1) we
propose to divide an image into small image patches for local
information extraction and combine information from different
image patches in a global perspective; 2) we investigate into
the visual impacts of the image patch differences based on the
human visual sensitivity, which is a key characteristics of the
HVS; 3) we utilize the amplitude spectrum of QFT to represent
the color, intensity, and orientation distributions for image
patches, to overcome the difficulty with linear or ad hoc feature
combination/pooling in the existing models; 4) we exploit the
characteristics of the HVS to determine the patch size and
perform the multi-scale operations. Different from our initial
work [18], we use the human visual sensitivity to determine the
weights of image patch differences and justify the effectiveness
of the proposed scheme with more aspects and applications. In
addition, the choice of patch size and multi-scale operation are
justified in this paper. We will explain the proposed model in
details in Section III.

III. SALIENCY DETECTION MODEL BASED ON HUMAN

VISUAL SENSITIVITY AND AMPLITUDE SPECTRUM

In this section, we describe the proposed model in details.
As mentioned above, the model first divides each original input
image into small image patches for gathering local informa-
tion. For simplicity, we take image patches from the original
images and do not do any preprocessing operation for extracting
image patches. In our work, the patch size is chosen as 8 8 and
partially overlapping. Here we select the size of image patches
based on the fovea size. Details of defining image patches will
be given in Section III-D. The saliency value for each image
patch is obtained through calculating the QFT amplitude spec-
trum differences between a patch and its neighbor patches, and
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Fig. 2. Framework of the proposed saliency detection model.

the weights for these differences determined by the human vi-
sual sensitivity. The proposed model is illustrated as Fig. 2. We
will describe the details step by step in Sections III-A–III-D.

A. Saliency Value for Each Patch

In the proposed model, the saliency value of each image patch
is determined by two factors: one is the patch differences be-
tween this image patch and all other image patches in the input
image; the other is the weighting for these patch differences. If
these differences between an image patch and all other image
patches are big, then the saliency value for this image patch
is large. In addition, we take the influence of the foveation be-
havior into consideration in the proposed model. Here, we use

to represent the difference between image patch and
image patch , the saliency value for image patch can be ex-
pressed as follows:

(1)

where is the weight for the patch difference between image
patches and , which is determined by the human visual
sensitivity.

It is generally believed that the HVS is highly space-variant
because the retina in the human eye has different density of
cone photoreceptor cells [26]. On the retina, the fovea owns
the highest density of cone photoreceptor cells. Thus, the fo-
cused area has to be projected on the fovea to be perceived at
the highest resolution. The density of the cone photoreceptor
cells becomes lower with larger retinal eccentricity. Therefore,

Fig. 3. Relationship between visual acuity and eccentricity [47].

the visual sensitivity decreases with the increased eccentricity
from the fixation point, as shown in Fig. 3 [26], [47], [48].

As to the saliency value of image patch in (1), all patch dif-
ferences between the image patch and the other image patches
are considered and summed together. We use the human vi-
sual sensitivity to determine the weights for the patch differ-
ences. In this study, the eccentricity from the center of the fix-
ation (the center of the image patch ) is not directly used as a
weighting factor for calculating the saliency value of the image
patch but a weighting factor for calculating the importance
of patch-difference pairs. Here, the weights for the patch dif-
ferences are determined by the human visual sensitivity, and
this means that the weights of the patch differences from its
nearer neighbor patches (with smaller eccentricities) are larger
compared with these from farther neighbor patches. With larger
eccentricity of image patches from the image patch (which
means farther image patches from the image patch ), the vi-
sual sensitivity decreases and thus the weighting for the patch
differences between these image patches and image patch be-
comes smaller. Therefore, the contributions of the patch dif-
ferences to the saliency value of image patch will decrease
with larger-eccentricity image patches from image patch . On
the contrary, the contributions of the patch differences to the
saliency value of the image patch will increase with smaller-ec-
centricity image patches from image patch . This is reasonable,
as the human eyes are more sensible to the patch differences
from nearer image patches compared with those from farther
image patches. Our proposed saliency detection model takes
both local and global center-surround differences into account,
for it uses the patch differences from all other image patches
in the image to calculate the saliency value of image patch .
We will describe how to get the and in details in
Sections III-B–III-D.

B. Amplitude Spectrum for Each Image Patch

In the proposed model, we use the color and intensity chan-
nels for QFT to get the amplitude spectrum for each image
patch, which is used to compute the differences between image
patches. As we know, the amplitude spectrum indicates the pres-
ence of the respective spatial frequencies and their strengths can
represent the orientation distribution in images [25]. Thus, the
amplitude spectrum of QFT can represent the color, intensity,
and orientation distributions for image patches when we use
the color and intensity channels as the input into QFT. Then
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the differences between amplitude spectrums of QFT for image
patches can show the differences for color, intensity, and orien-
tation distributions between image patches. Here we use oppo-
nent color space to represent the color information for image
patches. If , , and denote the red, green, and blue color
components, four broadly-tuned color channels are generated
as for red, for green,

for blue, and
for yellow. Each color channel is then decomposed

into red-green and blue-yellow double opponency according to
the related property of the human primary visual cortex [23]:

(2)

(3)

The intensity channel can be computed as
. We use one intensity channel , and two color channels
and , as three features for calculating the amplitude

spectrum of QFT. Based on the three features, the quaternion
representation for each image patch is as follows:

(4)

where , , and are unit pure quaternion;
; , , , and .

The symplectic decomposition for the above quaternion
image patch is given by

(5)

(6)

(7)

The study of [24] indicates that the QFT can be calculated by
using two standard complex fast Fourier transform. The QFT of

in (5) can be computed as follows:

(8)

(9)

where ; and are the locations for image
patches in spatial and frequency domains, respectively; and

are the height and width of image patches; is ob-
tained from (6) and (7).

According to (4)–(9), we can get the QFT result for
each image patch. Now we describe in polar form as
follows:

(10)

where is the QFT amplitude spectrum of the image patch;
is the corresponding QFT phase spectrum; is a unit pure

quaternion.
Actually, the FT amplitude spectrum can be calculated as

(11)

From (11), we can get the amplitude spectrum of QFT for
each image patch, to be used to represent each image patch.
In this study, we use the color and intensity channels for QFT,
so this amplitude spectrum from QFT includes color informa-
tion as well as intensity information. As we know, the ampli-
tude spectrum indicates the presence of the respective spatial
frequencies in images. The value of the amplitude spectrum in a
special direction of the center-shifted FT indicates the strength
of the orientation in a perpendicular direction [11], [25]. We
can get the strength of different orientations through using the
amplitude spectrum of the center-shifted FT, as shown in [11].
Thus, the amplitude spectrum used here can represent the orien-
tation distribution of image patches. As we use the color and in-
tensity channels for QFT in this study, the QFT amplitude spec-
trum can represent color, intensity, and orientation distributions
for image patches.

C. Differences Between Image Patches and Their Weighting
to Saliency Value

As described previously, the saliency value for each image
patch is determined by the weighted differences between this
patch and its patch neighbors including all other image patches
in the image. If an image patch is significantly different from
its neighbors, it has a higher probability to be a salient area. The
saliency value for an image patch should be larger with the larger
differences between this patch and its neighbors. As the spatial
distance (eccentricity) between the patch and its neighbor in-
creases, the weight of this difference to the saliency value of the
patch decreases. The saliency value for an image patch is cal-
culated according to (1). Now we discuss how in (1) is
obtained.

We use the Euclidian distance of the amplitude spectrum of
QFT to represent the differences between each patch and its
neighbors. To reduce the dynamic range of the amplitude co-
efficients, we use logarithm operation and add the constant 1 to
each original amplitude coefficient value to avoid the undefined
case when approaches zero. Using this algorithm, we can cal-
culate the difference between image patches and as

(12)

where indexes all pixels in an image patch.
We use the visual sensitivity to determine the weights of the

QFT amplitude spectrum differences between image patches.
Here we use the model developed in [47] to measure the human
contrast sensitivity as a function of eccentricity. The contrast
sensitivity is defined as the reciprocal of the contrast
threshold as follows:

(13)

According to the model in [47], the contrast threshold is de-
fined as

(14)

where is the spatial frequency (cycles/degree), is the retinal
eccentricity (degree); is the minimum contrast threshold; is
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Fig. 4. Relationship between viewing distance and retina eccentricity.

the spatial frequency decay constant; is the half-resolution ec-
centricity. According to the experiments reported in [47], these
parameters are set to , , and .

We can calculate the retina eccentricity according to its re-
lationship with viewing distance as Fig. 4. Given the position
of the fixation point (the center of an image patch), the
retinal eccentricity for the position (the center of an-
other image patch) can be computed as follows:

(15)

where is the Euclidian distance between and .
The typical ratio of the viewing distance to the picture height

is in the range of 3 to 6 [49]. Here we use a ratio of 4 to determine
the viewing distance.

Thus, we can get the weight as the normalized
based on (13)–(15). The weighting parameters in (1) can be
calculated as follows:

(16)

From the description above, the saliency value for the image
patch is represented as all the contributions from the patch dif-
ferences between the image patch and all other image patches
in the image, as calculated in (1).

D. Patch Size and Scale for Final Saliency Value

In this study, the final saliency map is influenced by the image
patch size. The conventional computational visual attention
models [7], [11] choose a fixed patch size empirically. In this
paper, we consider the characteristics of the HVS and the fovea
size. Given an image patch with the size , the relationship
between the eccentricity and the viewing distance can be
computed as follows:

(17)

Studies show that the 1 to 2 degree retinal area in the fovea
is with the best visual acuity and the parafovea surrounding the
fovea has lower visual acuity [39]. Here we use to represent
the eccentricity for the best visual acuity, which is set as 1 de-
gree. We set , where to make sure that with ,
good visual acuity is maintained. As mentioned previously, the
typical viewing distance is 3 to 6 times of the image height. Here

Fig. 5. Original images and its different saliency maps with different patch
sizes. (a) Original images. (b) Saliency maps with the image patch, the eccen-
tricity of whose width is 0.25 degree. (c) Saliency maps with the image patch,
the eccentricity of whose width is 0.2 degree. (d) Saliency maps with the image
patch, the eccentricity of whose width is 0.15 degree.

we set the view distance as 4 times of the image height, while
setting as 0.2. Setting means that the maximum ec-
centricity for the width of the image patch is 0.2 degree, which
can guarantee that the whole image patch is in area with the
best visual acuity. In addition, for better effect, we divide the
input images into partially overlapping image patches, which is
determined by the overlap-eccentricity . We choose the pa-
rameter .

As we can see, the saliency values for all pixels in an image
patch obtained based on and are similar. Thus,
the patch size would influence the final saliency map. With a
smaller patch size, the final saliency map will become more
distinguishable, as shown in Fig. 5 where the saliency map with
the smallest image patch size (the eccentricity of 0.15 degrees)
is more distinguishable than the other two with larger patch
sizes. Of course, to obtain more accurate saliency map, we can
divide images into smaller image patches with larger overlap-
ping; however, in this situation, the computational complexity
will increase. Given an input image with size of (where

is the width and is the height): with the patch size of
, the computational complexity of the proposed algorithm

is with overlapping. Therefore, with
the smaller patch size or more overlapping, the computational
complexity will increase. Thus, we choose the suitable patch
size to compute the saliency map based on the consideration of
fovea characteristics, saliency detection performance, and the
computational complexity.

Except the patch size, the scale will also influence the final
saliency map. In the saliency map, the saliency value for the
image patches from salient areas are much higher than that for
these patches belonging to background. For the images with dif-
ferent scales, the saliency values of background are similarly
low, while the saliency values of salient areas are high. Thus,
using multi-scale can strengthen the saliency for these salient
areas. We adopt the steerable pyramid algorithm [33] to get
multi-scale images. This algorithm obtains multi-scale images
through low-pass filtering and subsampling the input image. For
simplicity, here we use the linear combination to obtain the final
saliency map. Thus, the saliency value for pixel is expressed
as follows:

(18)
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where is the scale number; is the saliency value for image
patch in the th scale. The image with the lowest scale level
should not be too small for a good performance of the final
saliency map. Our experiments show that the lowest scale level
should not be smaller than one fourth of the original scale.
Therefore, we use 3 different scales to get the final saliency
map: the original scale, a half of the original scale, and one
fourth of the original scale.

IV. EVALUATIONS

From the discussion in Section II, we know that there are
some defects for the saliency maps from the existing saliency
detection models. We have also compared the performance of
the proposed method with others in Fig. 1. As a further experi-
ment, we give a quantitative evaluation of the saliency map ob-
tained from our proposed model and other relevant saliency de-
tection models on a public database.

Saliency map can give the salient areas for images, which
can provide the locations for salient object candidates. One ef-
ficient quantitative evaluation method for saliency detection al-
gorithms is to detect salient objects for natural images. Many
studies have used saliency map to detect objects for natural im-
ages [5], [6], [9], [44]. The quantitative evaluation of this ex-
periment is based on a database of 5000 images from Microsoft
database [9]. This image database includes the original images
and their corresponding ground-truth indicated with bounding
boxes by 9 subjects. We calculate the ground-truth saliency map
for images by averaging the 9 users’ labeled-data (similar with
[9]). Thus, the quantitative evaluation for a saliency detection
algorithm is to see how much the saliency map from the algo-
rithm overlaps with the ground-truth saliency map. Here, we use
the precision, recall, and F-measure to evaluate the performance
of our proposed model. Precision is computed as the ratio of
correctly detected saliency region to the detected salient region
from the saliency detection algorithm. Recall is calculated as
the ratio of correctly detected salient region to the ground-truth
salient region. Given a ground-truth saliency map and the de-
tected saliency map for an image, we have

(19)

(20)

F-measure, a harmonic mean of precision and recall, is a
measure that combines precision and recall. It is calculated as
follows:

(21)

where is a positive parameter to decide the importance of
precision over recall in computing the F-measure.

Generally, the precision indicates the performance of the
saliency detection algorithms compared with ground-truth
saliency map. To compare the proposed model with others, we
always see the precision value for different algorithms, for the
precision value is the ratio of the correctly detected region over
the whole detected region. We set in this experiment as

Fig. 6. Experiment results for the comparison between our proposed model and
others.

in [11] for fair comparison. The comparison results are shown
in Fig. 6. Here we use the original experiment results of other
models including the models [5], [11], [31], [44] from [11]. The
model in [44] is an improved saliency detection model based
on [3]. In Fig. 6, we can see that the overall performance of our
proposed model for the 5000 images is better than the others
under comparison in terms of all three measures.

In Fig. 7, we show some comparison samples of saliency
maps from our proposed model and the others. From this figure,
we can see that the saliency maps from the proposed model are
better than those from other existing ones. From fifth and sixth
rows in Fig. 7, all other models just detect the contour of the
salient objects, while the proposed model can detect the whole
salient objects exactly.

V. APPLICATION: IMAGE RETARGETING

Saliency map plays an important role in many image pro-
cessing applications such as image retargeting [14], [28], [38].
With different screen resolutions in devices such as smart
phones and PDAs, the displayed image has to be resized to fit
for different display sizes and aspect ratios. An effective image
retargeting algorithm should preserve the visually important
content without much distortion to the image context. The
saliency map, which can detect the salient areas for images,
measures the visual importance for image pixels in image retar-
geting for better representations [28], [30], [37]. In this work,
we show how the better detected saliency map can improve the
image retargeting performance and therefore demonstrate the
effectiveness of the proposed saliency detection algorithm.

The performance of image retargeting algorithms greatly de-
pends on the visual significance map, which is used to measure
the visual importance for each pixel in images. The visual signif-
icance map used in the existing image retargeting algorithms in-
cludes the gradient map, the saliency map, and some high-level
feature maps such as the facial map [15], [16], [27]–[30]. Here,
we apply the saliency map from the proposed model in the
framework of [29] to demonstrate the effectiveness of the pro-
posed model in the application of image retargeting.

In this experiment, we compare the performance of the
proposed image retargeting algorithm and three existing image
retargeting techniques [16], [29], [30] based on the Microsoft
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Fig. 7. Saliency maps from different saliency detection models. (a) Original images. (b) Saliency maps from Itti’s model [3]. (c) Saliency maps from Hou’s model
[5]. (d) Saliency maps from Ma’s model [31]. (e) Saliency maps from Gopalakrishnan’s model [11]. (f) Saliency maps from the proposed model. (g) Human-labeled
maps from 9 subjects.

database [9]. We found that our image retargeting algorithm
using the saliency map from the proposed model outperforms
the others greatly for the images with complex background;
while the performance of our proposed image retargeting algo-
rithm is similar with the others for other images with simple
background. The reason is that the saliency map from the
proposed saliency detection model measures the importance
of each pixel in images with complex background more accu-
rately compared with the visual significance map from other

algorithms, as shown in the first row of Fig. 8. For the images
with simple background, the visual significance maps used in
other image retargeting algorithms can get similar result with
the saliency map from our proposed model, as shown in the
second row of Fig. 8.

To better compare the performance of different visual signif-
icance maps and saliency maps in image retargeting, we have
conducted a user study based on two image datasets: one in-
cludes 23 images with complex background, while the other
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Fig. 8. Original images, visual significance maps, and retargeted images from different algorithms. (a) Original images. (b) Gradient maps from algorithm [29].
(c) Retargeted images from algorithm [29]. (d) Saliency maps from Itt’s model [3]. (e) Retargeted images from [30] (Itti’s model is integrated into this algorithm to
measure the importance of each pixel for images). (f) Saliency maps from the proposed model. (g) Retargeted images from our image retargeting algorithm based
on the proposed saliency detection model.

Fig. 9. Detailed statistical results of the mean score for each retargeted image
from ten participants for four different algorithms for the first image dataset.

includes 23 images with simple background. All these 46 im-
ages are selected from Microsoft database [9]. Three existing
image retargeting algorithms [16], [29], [30] are utilized for per-
formance comparison. Ten participants (three female and seven
male) were involved in this experiment. The experiment was
conducted in the typical laboratory environment. The original
image was displayed in the middle of the display screen as the
reference image, while four retargeted images from four dif-
ferent algorithms were displayed in random orders surrounding
the reference image. Mean opinion scores (1–5) were recorded
by participants where 1 means bad viewing experience and 5
means excellent viewing experience. Each participant voted for
these 46 images. The mean score for each retargeted image from
ten participants for four different algorithms are shown in Figs. 9
and 10, respectively, for these two image datasets.

Fig. 9 shows that the mean scores of the retargeted images
from the proposed algorithm are much higher than the mean
scores from other algorithms for the first dataset. Fig. 11 shows
the overall mean scores of the 23 retargeted images in the first
dataset for four different algorithms. These two figures demon-
strate that the performance of the proposed algorithm is the best
and the performance of algorithms [16] and [30] are better than
that from algorithm [29] for the images with complex back-
ground in the first image dataset. In Fig. 10, it might be noted
that the results of the four algorithms are close for the images
with simple background in the second dataset. Fig. 12 shows the
overall mean scores of 23 images in the second dataset for four
different image retargeting algorithms. In this figure, it can be

Fig. 10. Detailed statistical results of the mean score for each retargeted image
from ten participants for four different algorithm for the second image dataset.

Fig. 11. Overall mean scores of 23 retargeted images from four different algo-
rithms for the first image dataset.

seen that the overall mean score of the retargeted images from
our algorithm is slightly higher than those from the other al-
gorithms. As the overall mean scores from four algorithms are
close to each other, the overall performances of four algorithms
are comparable for the images with simple background.

Overall, Figs. 9–12 show that the image retargeting algorithm
based on our proposed saliency detection algorithm outper-
forms the others. Some retargeted images from the two datasets
are depicted in Figs. 13 and 14. As can be seen in Fig. 13,
the retargeted images from the other three existing image
retargeting algorithms suffer some distortion in salient objects,
whereas the retargeted images from our algorithm preserve
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Fig. 12. Overall mean scores of 23 retargeted images from four different algo-
rithms for the second image dataset.

Fig. 13. Retargeted image samples from the first image dataset (images with
complex background) for four algorithms. (a) Original images. (b) Retargeted
images from [29]. (c) Retargeted images from [30]. (d) Retargeted images from
[16]. (e) Retargeted images from our algorithm. The sizes of the original images
and the retargeted images are 300� 400 and 300� 300, respectively.

Fig. 14. Retargeted image samples from the second image dataset (images with
simple background) for four algorithms. (a) Original images. (b) Retargeted im-
ages from [29]. (c) Retargeted images from [30]. (d) Retargeted images from
[16]. (e) Retargeted images from our algorithm. The sizes of the original im-
ages and the retargeted images are 300� 400 and 300� 300, respectively.

the salient objects accurately. In Fig. 14, it can be seen that
the retargeted images from all four algorithms are somewhat
similar and without much distortion. More comparison results
can be found at: https://sites.google.com/site/leofangyuming/
Home/saliencydetection.

VI. CONCLUSIONS

In this paper, we proposed a novel bottom-up saliency de-
tection model based on both local and global feature contrast,

the human visual sensitivity and QFT amplitude spectrum. The
proposed model first divides the input images into small image
patches. It then uses the QFT amplitude spectrum to represent
the color, intensity, and orientation distributions for image
patches. The saliency value for each image patch is obtained
by computing the differences between the QFT amplitude
spectrum of this patch and all other patches in the image, and
the weights for these differences determined by the visual
impacts of the human visual sensitivity. The proposed saliency
detection model also utilizes the characteristics of the HVS for
the selection of patch size and multi-scale operations. Com-
pared with the existing models, the proposed model has better
performance with regard to the ground truth of human-labeled
salient objects. In addition, we demonstrate the advances of
our proposed saliency detection model in image retargeting.
Experiment results from a user study show that the results of
the image retargeting algorithm based on our proposed model
are better than those of other existing ones.

REFERENCES

[1] W. James, The Principles of Psychology. Cambridge, MA: Harvard
Univ. Press, 1890.

[2] A. Treisman and G. Gelade, “A feature-integration theory of attention,”
Cognit. Psychol., vol. 12, no. 1, pp. 97–136, 1980.

[3] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual atten-
tion for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 20, no. 11, pp. 1254–1259, Nov. 1998.

[4] J. Harel, C. Koch, and P. Perona, “Graph-based visual saliency,” Adv.
Neural Inf. Process. Syst., vol. 19, pp. 545–552, 2006.

[5] X. Hou and L. Zhang, “Saliency detection: A spectral residual ap-
proach,” in Proc. IEEE Int. Conf. Computer Vision and Pattern Recog-
nition, 2007.

[6] C. Guo, Q. Ma, and L. Zhang, “Spatio-temporal saliency detection
using phase spectrum of quaternion Fourier transform,” in Proc. IEEE
Int. Conf. Computer Vision and Pattern Recognition, 2008.

[7] N. D. Bruce and J. K. Tsotsos, “Saliency based on information maxi-
mization,” Adv. Neural Inf. Process. Syst., vol. 18, pp. 5–162, 2006.

[8] L. Itti and C. Koch, “Computational modeling of visual attention,” Na-
ture Rev. Neurosci., vol. 2, no. 3, pp. 194–203, Mar. 2001.

[9] T. Liu, J. Sun, N. Zheng, X. Tang, and H. Y. Shum, “Learning to detect
a salient object,” in Proc. IEEE Int. Conf. Computer Vision and Pattern
Recognition, 2007.

[10] D. Gao and N. Vasconcelos, “Bottom-up saliency is a discriminant
process,” in Proc. IEEE Int. Conf. Computer Vision, 2007.

[11] V. Gopalakrishnan, Y. Hu, and D. Rajan, “Salient region detection by
modeling distributions of color and orientation,” IEEE Trans. Multi-
media, vol. 11, no. 5, pp. 892–905, Aug. 2009.

[12] L. Itti, “Automatic foveation for video compression using a neurobi-
ological model of visual attention,” IEEE Trans. Image Process., vol.
13, no. 10, pp. 1304–1318, Oct. 2004.

[13] R. Valenti, N. Sebe, and T. Gevers, “Image saliency by isocentric
curvedness and color,” in Proc. IEEE Int. Conf. Computer Vision,
2009.

[14] L. Q. Chen, X. Xie, X. Fan, W. Y. Ma, H. J. Zhang, and H. Q. Zhou,
“A visual attention model for adapting images on small displays,” Mul-
timedia Syst., vol. 9, no. 4, pp. 353–364, 2003.

[15] S. Avidan and A. Shamir, “Seam carving for content-aware image re-
sizing,” ACM Trans. Graph., vol. 26, no. 3, pp. 267–276, 2007.

[16] L. Wolf, M. Guttmann, and D. Cohen-Or, “Nonhomogeneous content-
driven video-retargeting,” in Proc. IEEE Int. Conf. Computer Vision,
2007, pp. 1–6.

[17] A. V. Oppenheim and J. S. Lim, “The importance of phase in signals,”
Proc. IEEE, vol. 69, pp. 529–541, 1981.

[18] Y. Fang, W. Lin, B. Lee, C. Lau, and C. Lin, “Bottom-up saliency de-
tection model based on amplitude spectrum,” in Proc. Int. Conf. Multi-
Media Modeling, 2011.

[19] J. M. Wolfe, S. J. Butcher, and M. Hyle, “Changing your mind: On the
contributions of top-down and bottom-up guidance in visual search for
feature singletons,” J. Experiment. Psychol.: Human Percept. Perform.,
vol. 29, pp. 483–502, 2003.



FANG et al.: BOTTOM-UP SALIENCY DETECTION MODEL BASED ON HUMAN VISUAL SENSITIVITY AND AMPLITUDE SPECTRUM 197

[20] Z. Lu, W. Lin, X. Yang, E. Ong, and S. Yao, “Modeling visual atten-
tion’s modulatory aftereffects on visual sensitivity and quality evalu-
ation,” IEEE Trans. Image Process., vol. 14, no. 11, pp. 1928–1942,
Nov. 2005.

[21] A. Torralba, A. Oliva, M. S. Castelhano, and J. M. Henderson, “Con-
textual guidance of eye movements and attention in real-world scenes:
The role of global features in object search,” Psychol. Rev., vol. 113,
no. 4, pp. 766–786, 2006.

[22] C. Kanan, M. Tong, L. Zhang, and G. Cottrell, “SUN: Top-down
saliency using natural statistics,” Visual Cognit., vol. 17, no. 6, pp.
979–1003, 2009.

[23] S. Engel, X. Zhang, and B. Wandell, “Colour tuning in human visual
cortex measured with functional magnetic resonance imaging,” Nature,
vol. 388, no. 6,637, pp. 68–71, Jul. 1997.

[24] T. Ell and S. Sangwin, “Hypercomplex Fourier transforms of color im-
ages,” IEEE Trans. Image Process., vol. 16, no. 1, pp. 22–35, Jan. 2007.

[25] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed.
Englewood Cliffs, NJ: Prentice-Hall.

[26] B. A. Wandell, Foundations of Vision. Sunderland, MA: Sinauer As-
sociates, 1995.

[27] H. Liu, X. Xie, W.-Y. Ma, and H.-J. Zhang, “Automatic browsing of
large pictures on mobile devices,” in Proc. ACM Int. Conf. Multimedia,
2003, pp. 148–155.

[28] Y. Guo, F. Liu, J. Shi, Z.-H. Zhou, and M. Gleicher, “Image retargeting
using mesh parametrization,” IEEE Trans. Multimedia, vol. 11, no. 5,
pp. 856–867, Aug. 2009.

[29] M. Rubinstein, A. Shamir, and S. Avidan, “Improved seam carving for
video retargeting,” ACM Trans. Graph., vol. 27, no. 3, pp. 1–9, 2008.

[30] T. Ren, Y. Liu, and G. Wu, “Image retargeting based on global energy
optimization,” in Proc. IEEE Int. Conf. Multimedia and Expo, 2009,
pp. 406–409.

[31] Y. F. Ma and H. J. Zhang, “Contrast-based image attention analysis by
using fuzzy growing,” in Proc. ACM Int. Conf. Multimedia, 2003, pp.
374–381.

[32] L. N. Piotrowski and F. W. Campbell, “A demonstration of the visual
importance and flexibility of spatial-frequency amplitude and phase,”
Perception, vol. 11, pp. 337–346, 1982.

[33] H. Greenspan, S. Belongie, R. Goodman, P. Perona, S. Rakshit, and
C. H. Anderson, “Overcomplete steerable pyramid filters and rotation
invariance,” in Proc. IEEE Int. Conf. Computer Vision and Pattern
Recognition, Seattle, WA, Jun. 1994, pp. 222–228.

[34] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic
representation of the spatial envelop,” Int. J. Comput. Vision, vol. 42,
pp. 145–175, 2001.

[35] D. J. Field, “Relations between the statistics of natural images and the
response properties of cortical cells,” J. Optic. Soc. Amer., vol. 4, no.
12, pp. 2379–2394, 1987.

[36] C. Guo and L. Zhang, “A novel multi-resolution spatiotemporal
saliency detection model and its applications in image and video com-
pression,” IEEE Trans. Image Process., vol. 19, no. 1, pp. 185–198,
Jan. 2010.

[37] Y.-S. Wang, C.-L. Tai, O. Sorkin, and T.-Y. Lee, “Optimized scale-
and-stretch for image resizing,” ACM Trans. Graph., vol. 27, no. 5, pp.
1–8, 2008.

[38] H. Liu, S. Jiang, Q. Huang, C. Xu, and W. Gao, “Region-based visual
attention analysis with its application in image browsing on small dis-
plays,” in Proc. ACM Int. Conf. Multimedia, 2007.

[39] M. A. Just and P. A. Carpenter, The Psychology of Reading and Lan-
guage Comprehension. Newton, MA: Allyn & Bacon, 1987.

[40] H. Pashler, The Psychology of Attention. Cambridge, MA: MIT
Press, 1997.

[41] , H. Pashler, Ed., Attention. Hove, U.K.: Psychology Press, 1988.
[42] L. Itti, “Models of bottom-up and top-down visual attention,” Ph.D.

dissertation, Dept. Comput. Neural Syst., California Inst. Technol.,
Pasadena, 2000.

[43] J. Braun and D. Sagi, “Vision outside the focus of attention,” Percept.
Psychophys., vol. 48, no. 1, pp. 45–48, 1990.

[44] D. Walther and C. Koch, “Modeling attention to salient proto-objects,”
Neural Netw., vol. 19, pp. 1395–1407, 2006.

[45] J. Wolfe, K. R. Cave, and S. L. Franzel, “Guided search: An alterna-
tive to the feature integration model for visual search,” J. Experiment.
Psychol.: Human Percept. Perform., vol. 15, no. 3, pp. 419–433, 1989.

[46] J. Wolfe, “Guided search 2.0: A revised model of visual search,” Psy-
chonom. Bull. Rev., vol. 1, no. 2, pp. 202–238, 1994.

[47] W. S. Geisler and J. S. Perry, “A real-time foveated multi-solution
system for low-bandwidth video communication,” in Proc. SPIE, Jul.
1998, vol. 3299, pp. 294–305.

[48] Z. Chen and C. Guillemot, “Perceptually-friendly H.264/AVC video
coding based on foveated just-noticeable-distortion model,” IEEE
Trans. Circuits Syst. Video Technol., vol. 20, no. 6, pp. 806–819, Jun.
2010.

[49] ITU, Methodology for the Subjective Assessment of the Quality of
Television Pictures, Geneva, Switzerland, 2002, ITU-R BT.500-11.

Yuming Fang received the B.E. degree in software
engineering from Sichuan University, Chengdu,
China, in 2006 and the M.S. degree in communica-
tion and information system from Beijing University
of Technology, Beijing, China, in 2009. He is
currently pursuing the Ph.D. degree from the School
of Computer Engineering, Nanyang Technological
University, Singapore.

His research interests include image/video pro-
cessing and computer vision.

Weisi Lin (M’92–SM’98) received the B.Sc. degree
in electronics and the M.Sc. degree in digital signal
processing from Zhongshan University, Guangzhou,
China, in 1982 and 1985, respectively, and the Ph.D.
degree in computer vision from King’s College,
London University, London, U.K., in 1992.

He taught and conducted research at Zhongshan
University, Shantou University (China), Bath Univer-
sity (U.K.), the National University of Singapore, the
Institute of Microelectronics (Singapore), and the In-
stitute for Infocomm Research (Singapore). He has

been the Project Leader of 13 major successfully-delivered projects in digital
multimedia technology development. He also served as the Lab Head, Visual
Processing, and the Acting Department Manager, Media Processing, for the In-
stitute for Infocomm Research. Currently, he is an Associate Professor in the
School of Computer Engineering, Nanyang Technological University, Singa-
pore. His areas of expertise include image processing, perceptual modeling,
video compression, multimedia communication, and computer vision. He holds
ten patents, edited one book, authored one book and five book chapters, and has
published over 160 refereed papers in international journals and conferences.
He believes that good theory is practical, so has kept a balance of academic re-
search and industrial deployment throughout his working life.

Dr. Lin is a fellow of Institution of Engineering Technology (IET) and a
Chartered Engineer (U.K.). He organized special sessions in IEEE ICME06,
IEEE IMAP07, IEEE ISCAS10, PCM09, SPIE VCIP10, APSIPA11, and
MobiMedia11. He gave invited/keynote/panelist talks in VPQM06, IEEE
ICCCN07, SPIE VCIP10, and IEEE MMTC QoEIG (2011), and tutorials
in PCM07, PCM09, IEEE ISCAS08, IEEE ICME09, APSIPA10, and IEEE
ICIP10. He currently serves on the editorial boards of the IEEE TRANSACTIONS

ON MULTIMEDIA, IEEE SIGNAL PROCESSING LETTERS, and Journal of Visual
Communication and Image Representation, and four IEEE Technical Com-
mittees; he co-chairs the IEEE MMTC Special Interest Group on Quality of
Experience. He has been on Technical Program Committees and/or Organizing
Committees of a number of international conferences.

Bu-Sung Lee (M’08) received the B.Sc. (Hons) and
Ph.D. degrees from the Electrical and Electronics De-
partment, Loughborough University of Technology,
Loughborough, U.K., in 1982 and 1987, respectively.

He is an Associate Professor with the Nanyang
Technological University, Singapore. He is active
in the development of the Research and Education
Network in Singapore and the Asia Pacific Region,
e.g., Trans-EuroAsia Network. His research interest
covers grid/cloud computing, wireless communica-
tion, and multimedia communication.



198 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 14, NO. 1, FEBRUARY 2012

Chiew-Tong Lau (M’84) received the B.Eng.
degree from Lakehead University, Thunder Bay,
ON, Canada, in 1983, and the M.A.Sc. and Ph.D.
degrees in electrical engineering from the University
of British Columbia, Vancouver, BC, Canada, in
1985 and 1990, respectively.

He is currently an Associate Professor in the
School of Computer Engineering, Nanyang Techno-
logical University, Singapore. His research interests
include wireless communications systems and signal
processing.

Zhenzhong Chen (M’07) received the B.Eng.
degree from Huazhong University of Science and
Technology (HUST), Wuhan, China, and the Ph.D.
degree from Chinese University of Hong Kong
(CUHK), both in electrical engineering.

He is currently a Lee Kuan Yew Research Fellow
and Principal Investigator at Nanyang Technolog-
ical University (NTU), Singapore. Before joining
NTU, he was an ERCIM fellow at the National
Institute for Research in Computer Science and
Control (INRIA), France. He held visiting positions

at Polytech’Nantes, France, and Universite Catholique de Louvain (UCL),
Belgium. His current research interests include visual perception, visual signal
processing, and multimedia communications.

Dr. Chen is a voting member of the IEEE Multimedia Communications
Technical Committee (MMTC) and an invited member of the IEEE MMTC
Interest Group of Quality of Experience for Multimedia Communications
(QoEIG) (2010–2012). He has served as a guest editor of special issues
for IEEE MMTC E-letter and Journal of Visual Communication and Image
Representation. He has co-organized several special sessions at international
conferences, including IEEE ICIP 2010, IEEE ICME 2010, and Packet Video
2010, and has served as a technical program committee member of IEEE ICC,
GLOBECOM, CCNC, ICME, etc. He received the CUHK Faculty Outstanding
Ph.D. Thesis Award, Microsoft Fellowship, and the ERCIM Alain Bensoussan
Fellowship. He is a member of SPIE.

Chia-Wen Lin (S’94–M’00–SM’04) received the
Ph.D. degree in electrical engineering from National
Tsing Hua University (NTHU), Hsinchu, Taiwan, in
2000.

He is currently an Associate Professor with the
Department of Electrical Engineering, NTHU. He
was with the Department of Computer Science and
Information Engineering, National Chung Cheng
University (CCU), Taiwan, during 2000–2007. Prior
to joining academia, he worked for the Information
and Communications Research Laboratories, In-

dustrial Technology Research Institute (ICL/ITRI), Hsinchu, Taiwan, during
1992–2000, where his final post was Section Manager. He has authored or
coauthored over 100 technical papers. He holds more than 20 patents. His
research interests include video content analysis and video networking.

Dr. Lin is an Associate Editor of the IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS FOR VIDEO TECHNOLOGY and the Journal of Visual Communication
and Image Representation, and an Area Editor of EURASIP Signal Processing:
Image Communication. He has served as a Guest Co-Editor of four special is-
sues for the IEEE TRANSACTIONS ON MULTIMEDIA, the EURASIP Journal on
Advances in Signal Processing, and the Journal of Visual Communication and
Image Representation. He served as Technical Program Co-Chair of the IEEE
International Conference on Multimedia & Expo (ICME) in 2010, and Special
Session Co-Chair of the IEEE ICME in 2009. He was a recipient of the 2001
Ph.D. Thesis Awards presented by the Ministry of Education, Taiwan. His paper
won the Young Investigator Award presented by SPIE VCIP 2005. He received
the Young Faculty Awards presented by CCU in 2005 and the Young Investi-
gator Awards presented by National Science Council, Taiwan, in 2006.


